Cilostazol Inhibits Vascular Smooth Muscle Cell Proliferation and Reactive Oxygen Species Production through Activation of AMP-activated Protein Kinase Induced by Heme Oxygenase-1.

نویسندگان

  • Jung Eun Kim
  • Jin Young Sung
  • Chang-Hoon Woo
  • Young Jin Kang
  • Kwang Youn Lee
  • Hee Sun Kim
  • Woo Hyung Kwun
  • Hyoung Chul Choi
چکیده

Cilostazol is a selective inhibitor of phosphodiesterase 3 that increases intracellular cAMP levels and activates protein kinase A, thereby inhibiting vascular smooth muscle cell (VSMC) proliferation. We investigated whether AMP-activated protein kinase (AMPK) activation induced by heme oxygenase-1 (HO-1) is a mediator of the beneficial effects of cilostazol and whether cilostazol may prevent cell proliferation and reactive oxygen species (ROS) production by activating AMPK in VSMC. In the present study, we investigated VSMC with various concentrations of cilostazol. Treatment with cilostazol increased HO-1 expression and phosphorylation of AMPK in a dose- and time-dependent manner. Cilostazol also significantly decreased platelet-derived growth factor (PDGF)-induced VSMC proliferation and ROS production by activating AMPK induced by HO-1. Pharmacological and genetic inhibition of HO-1 and AMPK blocked the cilostazol-induced inhibition of cell proliferation and ROS production.These data suggest that cilostazol-induced HO-1 expression and AMPK activation might attenuate PDGF-induced VSMC proliferation and ROS production.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoproterenol inhibits angiotensin II-stimulated proliferation and reactive oxygen species production in vascular smooth muscle cells through heme oxygenase-1.

Heme oxygenase (HO)-1 is a well-known cytoprotectant against oxidative stress and exhibits an antiproliferative effect in vascular smooth muscle cells (VSMCs). The purpose of the present study was to test whether isoproterenol, one of the synthetic catecholamines having beta-adrenergic activity, affected angiotensin II (Ang II)-induced cell proliferation and reactive oxygen species (ROS) produc...

متن کامل

Redox-sensitive transcription factor Nrf2 regulates vascular smooth muscle cell migration and neointimal hyperplasia.

OBJECTIVE Reactive oxygen species are important mediators for platelet-derived growth factor (PDGF) signaling in vascular smooth muscle cells, whereas excess reactive oxygen species-induced oxidative stress contributes to the development and progression of vascular diseases, such as atherosclerosis. Activation of the redox-sensitive transcription factor, nuclear factor erythroid 2-related facto...

متن کامل

Cilostazol promotes vascular smooth muscles cell differentiation through the cAMP response element-binding protein-dependent pathway.

OBJECTIVE Cilostazol, a potent type 3 phosphodiesterase inhibitor, has recently been found to reduce neointimal formation by inhibiting vascular smooth muscle cell (VSMC) proliferation. The aim of this study is to investigate whether cilostazol exerts an action on phenotypic modulation of VSMCs, another important process in the pathogenesis of neointimal formation. METHODS AND RESULTS Cilosta...

متن کامل

Fraxetin Induces Heme Oxygenase-1 Expression by Activation of Akt/Nrf2 or AMP-activated Protein Kinase α/Nrf2 Pathway in HaCaT Cells

BACKGROUND Fraxetin (7,8-dihydroxy-6-methoxy coumarin), a coumarin derivative, has been reported to possess antioxidative, anti-inflammatory and neuroprotective effects. A number of recent observations suggest that the induction of heme oxygenase-1 (HO-1) inhibits inflammation and tumorigenesis. In the present study, we determined the effect of fraxetin on HO-1 expression in HaCaT human keratin...

متن کامل

Ligustilide inhibits vascular smooth muscle cells proliferation.

Proliferation and migration of vascular smooth muscle cells (VSMCs) are believed to develop atherosclerosis and venous bypass graft disease. Ligustilide is widely used to treat some pathological settings such as atherosclerosis and hypertension. The aim of this study was to examine the effect of ligustilide on VSMCs proliferation. The results show that ligustilide significantly inhibited VSMCs ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Korean journal of physiology & pharmacology : official journal of the Korean Physiological Society and the Korean Society of Pharmacology

دوره 15 4  شماره 

صفحات  -

تاریخ انتشار 2011